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ABSTRACT

General methodologies for analyzing music — even structuralist 
ones — implicitly rely on perceptual principles. Indeed, music 
cannot be thoroughly understood without an appreciation of 
its communicative value. In fact, all limitations encountered 
by contemporary approaches of automated musical pattern 
discovery stem from an insufficient consideration for perception. 
It would be of high benefit, therefore, to develop a computational 
approach of automated music analysis based on a cognitive 
modeling of music perception. This first step towards a cognitive 
understanding of musical pattern perception aims at conceiving a 
general cognitive system that is able to produce expected results 
without combinatorial explosion. A new general methodology 
for Musical Pattern Discovery is proposed, which tries to 
mimic the flow of cognitive and sub-cognitive inferences that 
are processed when hearing a piece of music. Patterns have to 
be discovered along the branch of a syntagmatic graph, which 
generalizes the syntagmatic chain for polyphonic context. A 
musical pattern class is defined as a set of characteristics that are 
approximately shared by different pattern occurrences within the 
score. Moreover, pattern occurrence not only relies on internal 
sequence properties, but also on external context. Onto the score 
is build pattern occurrence chains which themselves interface 
with pattern class chains. Pattern classes may be inter-associated, 
in order to formalize relations of inclusion or repetition. The 
implemented algorithm is able to discover pertinent patterns, 
even when occurrences are, as in everyday music, translated, 
slightly distorted, slowed or fastened. Such an understanding 
of music perception agrees with subjective experience. Such 
a computer modeling may offer to musicology a detailed and 
explicit understanding of music, and may suggest to cognitive 
science the necessary conditions for a virtual perception of 
musical pattern.

1. SOME NECESSARY CONDITIONS FOR 
MUSICAL PATTERN DISCOVERY

1.1. Pattern Characterization

The concept of musical pattern may be characterized following 
three main criteria:

• Pattern may result from implicit knowledge that 
cannot be obtained directly from the score, such 
as: expected phrase length or metric (Lerdahl and 
Jackendoff 1983). The trouble is, musical motives 
may be structured in an ambiguous way, through 
a breaking of these rigid rules.

• Low-level structural properties of the musical 
surface may be obtained through local boundary 

detection (Cambouropoulos 1998). For instance, 
grouping boundaries may be introduced 
between entities that contrast one with the other 
according to their pitch, duration, etc. Although 
such heuristics may enable an understanding 
of metric phenomenon, for instance, such 
local segmentation does not contribute to the 
understanding to the idea of musical pattern 
itself. Indeed, a musical pattern is implicitly built 
through contrastive aggregation.

• Finally, a musical pattern may be defined as a set 
of characteristic that is shared by several sets of 
notes throughout the score. These sets of notes 
are said to be similar in a certain sense. Such 
concept of similarity has to be explicitly defined. 
This repetition-oriented criterion of pattern seems 
to remain the most relevant one, since music 
motives are classically defined in this way.

1.2. Set Paradigm Vs. String Paradigm

In previous definition, a pattern is a repeated set of notes. A 
pattern may in fact be either a general set of notes (Wiggins, 
Lemström and Meredith 2002) or a sequence, that is: a succession 
of notes, where successive notes in the sequence are successive 
notes in the score. If pattern is not constrained to be a sequence, 
temporal distance between successive notes within this set may 
be arbitrarily large. Even if limitations are set on temporal 
distance between successive notes, non-pertinent patterns may be 
found. On the contrary, if pattern is constrained to be a sequence, 
motives hidden inside rich polyphonic accompaniment may be 
out of scope. The problem may be solved by searching for strings 
along the branches of a syntagmatic graph (see paragraph 3.1).

1.3. Musical Similarity

The idea of successiveness should not be considered in a rigid 
way in order to enable deletions of notes or insertions of new 
ones in the pattern. Dynamic programming (Rolland 1999) is the 
most classical way to handle such operations. But music features 
other kinds of sequence transformation, such as passing notes or 
appoggiaturas, which should be also considered.

Now patterns may be subject to other kinds of transformation. 
Simply transposed patterns may be detected by considering 
each pattern in its own transposition reference. For example, if 
patterns are described not with absolute pitch, but with relative 
pitch whose reference is the absolute pitch of the first note of 
the pattern, then such descriptions of transposed patterns are 
exactly identical. In the same way, slower and faster patterns 
may be considered as identical one with the other if a relative 
temporal representation is considered. For this purpose, instead 
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of considering the temporal interval between successive notes, 
the quotient between current temporal interval and first temporal 
interval is considered.

But real music features much more complex transformations. 
In particular, pitch and temporal distortions may appear 
locally inside patterns. To handle such plasticity, more relative 
viewpoints of the pattern may be considered, such as the contour 
representation in particular. However, such a crude representation 
is so loose that non-pertinent repetitions may also be detected. 
In fact, when considering such local distortions, there exist no 
viewpoint sufficiently loose for finding an exact repetition but 
in the same time sufficiently detailed for avoiding non-pertinent 
inferences. Therefore approximate repetition has to be tentatively 
inferred, to be induced from rough phenomenon, even if risks 
have to be taken.

1.4. Incremental Inference of Similarity

Lots of musical phenomenon deeply relies on the fact that 
music is progressively perceived, and that the listener itself 
progressively infers new knowledge about what he is currently 
hearing. Therefore, music listening should be considered as a 
kind of progressive reasoning. That is why some configurations 
are not detected and therefore not pertinent, simply because they 
cannot be caught during progressive listening. Hence, pattern 
cannot be defined solely along internal description, but also along 
external criteria, or context. It is senseless, therefore, to measure 
the similarity between sequences out of their context.

The incremental and logical thinking that builds human perception 
of music is ruled by fundamental principles, which are necessary 
for insuring a coherent process. For example, every time a 
sequence is considered as an occurrence of a pattern, every suffix 
could themselves be considered as occurrences of other pattern 
class, for simple mathematical reasons. But cognitively speaking, 
such inferences are not pertinent, since they do not correspond to 
inference human makes when listening to music. This is due to 
the fact that the first longest pattern was sufficient to explain the 
phenomenon, and that further inferences of suffixes would only 
infringe a clear analysis of the score. That is why suffix of pattern 
should not be explicitly represented.

1.5. Selection

As many patterns may be found, pertinent patterns are considered 
as those that feature a highest defined score (Cambouropoulos 
1998). Such selecting mechanism is a classical and efficient 
way to extract important knowledge. It should be remarked, 
however, that this global selection, although enabling a quick 
characterization of a piece, infringes a thorough understanding 
of the complete score. We would like to retrieve also little detail 
at particular places, that may be of high relevance, and that may 
be taken into account by an active listening. The only necessary 
condition for a pattern to be considered as pertinent is that its 
score (here a degree of activation) has to exceed a certain minimal 
threshold. Therefore, to pattern selection we would prefer the 
concept of pattern detection.

Finally, since the process of pattern discovery proceeds itself 
through explicit characterization, there is no need to characterize 
a posteriori the patterns that have been discovered.

2. DATA REPRESENTATION

2.1. Pattern Class And Occurrence

The fact that several sequences are considered as similar in a 
certain sense means that they all belong to a same abstraction, 
which may be considered as a pattern class. These sequences are 
therefore occurrences of the pattern class. In this way, any new 
sequence sharing the same similarity will simply be considered 
as a new occurrence of this pattern class. The pattern class is not 
represented by a single prototype, but by all its occurrences that 
are effectively linked to it.

2.2. Pattern Class Chain

According to the incremental characteristic of music perception, 
patterns are progressively discovered, interval by interval, from 
initial interval to whole pattern. Pattern classes have to be 
represented following this cognitive constraint. In particular, 
all possible prefixes of a pattern may be considered as a pattern, 
uncompleted indeed, but still a pattern. Therefore, prefix of 
pattern classes are pattern classes. The set of all prefixes of a 
pattern class, ordered by growing order of pattern length, is a 
chain, called pattern class chain (PCC). Progressively, for each 
new note of the pattern that is being discovered, a new pattern 
class is added as a continuation of the previous pattern class. In 
this way, if a prefix of a discovered pattern class appears later, it 
will simply be considered as a new occurrence of the intermediary 
pattern class associated to this pattern.

2.3. Pattern Occurrence Chain

Figure 1: The POC (black circles) interfaces notes in the score 
with the corresponding PCC (white circles).

For each pattern occurrence, an additional interface should 
associate the sequence of notes inside the score that constitutes 
the occurrence with the pattern class. Such interface may also be 
described as a chain — called pattern occurrence chain — where 
each successive state within the POC represents at the same time 
a note in the sequence and a state in the PCC (see Figure 1).

2.4. Pattern Associations

The idea of segmentation may implicitly and dangerously suggest 
that score features only one level of pattern representation. On the 
contrary, patterns of different lengths may coexist and there may 
be inclusion or intersection relationships between them. Thus 
pattern cannot simply be characterized through an enumeration of 
similar intervals. The inner description as explained below should 
be made explicit too, and should be inferred by the machine.
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We propose to represent such relationship between pattern and 
sub-pattern as follows. If occurrences of a pattern class feature a 
particular sub-pattern, a new POC, representing this sub-pattern, 
is linked to the PCC of the pattern itself. With such linking 
inside PCCs, a new association network is build between pattern 
classes. This high-level organization may help the recognition of 
basic pattern occurrences. In this way, expectations are generated 
by the system during the analysis: when a new occurrence of 
the pattern is discovered, sub-patterns are also expected (Meyer 
1956).

Figure 2: On the first bar of Bach’s Prelude may be build a POC 
(below the score) that is associated to the 8-note PCC (white 
circles), and two POC for the 3-note PCC (over the score). 
These 3-note patterns, since they are repeated on different 8-note 
patterns, are represented directly on the 8-note PCC with two 
additional POCs (at the bottom).

2.5. Pattern Repetition

If a pattern is repeated successively several times, occurrences 
are themselves elementary objects that forms a meta-pattern. 
In particular, local intervals may be considered between 
such successive occurrences. Such a successive repetition of 
occurrences of a same pattern class may simply be represented by 
extending each pattern with the first note of the following pattern, 
and by associating to this added note the POC of this same pattern 
class.

Figure 3: When a pattern is repeated more than twice, the 
last note of the pattern is linked to the first note through an 
additional POC on the PCC.

Such a mechanism is not as arbitrary as it may appear. When 
perceiving such successive repetitions of occurrences of a same 
8-note pattern, we actually perceive 9-note pattern, where last 
note is in the same time the first note of a new pattern. Thanks to 
this mechanism, every time we perceive a whole occurrence of 
the 9-note pattern, we then expect a new occurrence again.

3. ALGORITHMS

3.1. Syntagmatic Graph

In paragraph 1.2, we explained that a pattern should be considered 
as a sequence. This means that successive notes in the pattern 
should have syntagmatic relationships. Let n be current note. Let 
m

1
, m

2
, … be the set of simultaneous notes that precedes n but 

in the same time are temporally closest to n. Let mi be the note 
that has the closest pitch compared to n. Then m

i
 is a syntagmatic 

predecessor of n. Now if there exist past notes p
1
, p

2
, … whose 

pitch is particularly closer (defined below) to the pitch of n than 
any other note already known to be close to n, then the p

i
 that 

is the temporally closest note is also a syntagmatic predecessor. 
This last operation is repeated as long as necessary.

Now the pitch of p
i
 is particularly closer to the pitch of n than any 

other close notes when the quotient between the pitch distance 
between p

i
 and n and the pitch distance between any close note 

and n is below a certain threshold. In this way, a current note may 
accept several possible previous notes. Such interval between any 
previous note and current note, which is the building element of 
pattern construction, will be called local interval. Thanks to this 
decomposing of polyphony into streams, overlapping patterns 
may be discovered.

We then obtain a syntagmatic graph — a generalization of 
syntagmatic chain — where nodes are notes and directed arcs 
link syntagmatic predecessor with successor. Patterns have to be 
discovered along the branches of this graph.

3.2. Pattern Class Discovery

In this section, we will show how our system is able to detect 
new pattern classes, that is, new abstractions. As told previously, 
a pattern is defined as an approximately (or exactly) repeated 
sequence. So pattern will be discovered only if a similarity 
relationship is inferred between a current sequence and a past 
one. Past sequence has to be recalled because of its similarity 
with current sequence. The trouble is: current sequence does 
not already exist as a sequence if repetition itself is not already 
detected. In our previous works, we alleviated the task by 
imposing a constraint, which can be expressed as follows: for a 
new pattern repetition to be detected, the repetition of each single 
interval of the patterns has to be explicitly and progressively 
discovered. In particular, the similarity between the first interval 
of each patterns has to be inferred before inferring the similarity 
of the remaining of the pattern. The trouble is, such a constraint 
can hardly be satisfied. A generalization of this algorithm will 
then be proposed, that can overcome previous limitation.

First Approach. First, every local interval has to be memorized 
in an associative memory that is able to retrieve any interval 
similar to a query. For this purpose, a hash-table associates for 
each interval parameter the set of its occurrences within the 
score. Now if the hash-table shows a similarity between current 
local interval i

1
 and an old local interval i

1
’, a new pattern class 

is inferred (unless already discovered) associated to this single 
interval. Then if there exists any similarity between an interval 
i
2
 that follows previous local interval i

1
, and an interval i

2
’ that 
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follows previous old local interval i
1
’, then a new pattern class 

extends previous pattern class. And so on.

If i
1
 and i

1
’ have to be identical for being considered as similar, 

then pattern featuring a slight distortion on its first interval will 
not be detected. Therefore, a looser comparison between i

1
 and 

i
1
’ should be tolerated. But in this case, lots of non-pertinent little 

patterns will be inferred too. Moreover, with such approach it is 
not possible to detect patterns with different speed, since i

1
 and i

1
’ 

should have similar inter-onset value.

Second Approach. We propose to improve our first approach as 
follows. If current interval i

1
 is particularly similar to an old local 

interval i
1
’, then a pattern class is inferred as previously. If, on the 

contrary, this similarity is not very high, previous local intervals 
i
0
 that precede i

1
 are considered, and compared to previous local 

intervals i
0
’ that precede i

1
’. If the sequence i

0
-i

1
 is considered as 

similar to the sequence i
0
’-i

1
’, then a pattern class is inferred, that 

consist of this succession of two intervals. In this way, a pattern 
may be detected even if its first interval was not a sufficient 
clue. Now such approach may be immediately generalized to n 
intervals instead of 2.

Pattern Class Extension. Once a new pattern class has been 
discovered, its extension is an easier task. Indeed, the new local 
interval that extends the discovered new pattern just have to be 
compared to possible continuations of the discovered old pattern, 
instead of comparing it to all possible intervals through the hash-
table. Indeed, thanks to the previous pattern class initiation, two or 
more similar contexts have been discovered in the score. Pattern 
extension just consists of a deeper analysis of found contexts.

4. CONCLUSION AND FUTURE WORKS

This model has been implemented as a library of Open Music, 
a musical representation software developed at Ircam (Assayag 
and al. 1999). This new library called OMkanthus is able to find 
pertinent patterns in MIDI files, but also numerous non-pertinent 
ones. We surmise that such bad behavior may be avoided in the 
future through the integration of new general cognitive heuristics 
inside the framework.

The proposed model and implementation are still in an 
early phase, showing numerous limitations. Some further 
improvements include chord pattern discovery, comparison 
of sub-patterns associated to a pattern (inferring the similarity 
between sub-pattern themselves, comparing the relative pitch 
and temporal distance between sub-patterns). In a long term, such 
approach may try to go beyond pattern and catch higher-level 
concepts. Would a system be able to retrieve music theory?   
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